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ABSTRACT

The Arnold Engineering Development Center, von Ka’rmén’ Gas
Dynamics Facility and the Army Missile Command have engaged in
a cooperative effort to develop an efficient current interrupting
device to be used with inductive power supplies. A unique switch,
termed the "'gun switch', has been developed which utilizes gun-
powder as a propellant to drive a plastic piston into, and shear, an
electrical ribbon conductor. The gun switch has transferred up
to 220, 000 joules (36, 000 amp) into an 0. 06-ohm, 6-uh load with an
electrical transfer efficiency of 97 percent.
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SECTION |
INTRODUCTION

The feasibility of using an inductive energy storage system to
drive an array of high impedance flash tubes which, in turn, excited
a high energy laser array was demonstrated by Walker and Smithson
(Ref. 1). This work was conducted by a joint cooperative effort be-
tween the Arncld Engineering Development Center®, von Karman Gas
Dynamics Facility (AEDC-VKF) and the Army Missile Command
{AMICOM).

Special switching techniques are required to transfer a high energy
pulse from the inductive storage loop into the high impedance flash tube
load. Walker and Smithson {Ref. 1) describe the development of a so-
called "'copper tube'' fuse capable of transferring = 0.6 x 106 joules:
however, as they point out, approximately an equal amount of energy
was consumed in the fuse (i. e. switch) device. Dow, Lawrence, and
Rozian (Ref. 2) have also conducted research on high current fusing
techniques for inductive power supplies, and Baxter (Ref. 3) discusses
related problems. Apparently, from the previous research (Refs. 1
and 2) and the known literature, highly efficient switching techniques for
high impedance loads ¢n an inductance energy storage system are not
available.

Since the unit energy cost of a relatively large (> 106-joule) induct-
ance energy storage system is appreciably less than for a comparable
capacitance energy storage system (Ref. 4), the desire to develop
efficient switching techniques for inductive power supplies is of con-
siderable practical concern. Research directed toward the development
of improved switching techniques for inductive power supplies is the
subject of this report.

SECTION I
INDUCTIVE POWER SUPPLIES AT AEDC-YKF

Two inductive power supplies are currently used at AEDC-VKF
to drive arc-heated intermittent hypersonic tunnels. A 107—jou1e
system (Ref. 5) is used to drive a 50-in. hypervelocity tunnel (Gas

*Air Force Systems Command (AFSC)
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Dynamic Wind Tunnel, Hypersonic {H)), and a 108—jou1e system is used
to drive a 100-in, hypervelocity tunnel (Gas Dynamic Wind Tunnel,
Hypersonic (F)) (Ref. 6) of AEDC-VKF.

2.1 TUNNEL H SYSTEM

The Tunnel H inductive power supply, as used with the wind tunnel,
is shown schematically in Fig. 1. This system consists of a unipolar
generator, drive motor and coupling, flywheel, energy storage coil,
and associated bus and switches. The unipolar generator has a con-
tinuous rating of 80, 000 amp at 70 v and a pulse rating of 250, 000 amp
at 70 v for short time pulses. The system was designed to deliver
10'7 joules into a 0. 0825-ohm resistive load in 4. 12 msec at 20 kv;
however, certain components of this system presently limit the maxi-
mum available energy to about 5 x 106 joules. A more therough
description of the system was given by Fillers (Ref. 5).

Referring to Fig. 1, the unipolar generator and flywheel system
is driven by a 250-hp induction motor which can be engaged or
disengaged by means of a magnetic clutch. The generator and flywheel
can be brought up to full speed (3550 rpm) in about 20 min. About
50 x 106 joules of kinetic energy are stored in the flywheel at full speed.
The induction motor is disengaged from the generator and flywheel
assembly at the beginning of the charging cycle, but the generator con-
tinues to run by virtue of the momentum of the flywheel. At the same
time, a 15-kw dc motor-generator set {0 to 125 v} is connected to the
field of the generator, which then develops an electromotive force from
0 to 70 v. With the bus switch S2 remaining open (Fig. 1), the main
breaker S! is closed, sending current through the inductive storage
coil. This current rises to about 150, 000 amp in approximately & sec
for a typical case, and the angular velocity of the flywheel is thereby
reduced by about 20 percent. The bus switch S2 is closed about 0. 2 sec
before the current reaches a maximum, thus diverting a small fraction
(~ 3 percent) of the current through the magnetic fuse connecting the
electrodes (see Ref. 7 for a detailed description of the arc-chamber).
This fuse carries the total current for about 10 msec, and during this
period the main breaker S1 opens and becomes completely de-ionized.
The magnetic fuse then opens from a combination of ohmic heating and
induced magnetic forces and initiates the arc. The magnetic fuse thus
becomes the final transfer switch for transferring the current to the
desired 1o0ad, i.e., the electric arc within the arc-chamber. It should
be noted that the i2R loss of this switch is not critical since a major
portion of this loss appears as i2R heating of the test gas which is, of
course, the desired result. In some runs the duration of the arc is
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controlled by the short-circuit switeh S3, which can be used to short
- circuit the arc-chamber (or other load) and thus terminate the
discharge process.

2.2 TUNNEL H SYSTEM AS USED WITH AMICOM LASER AND PRESENT FUSE TESTS

A schematic of the Tunnel H inductive power supply as used by
Walker and Smithson (Ref. 1) with the AMICOM laser experiments is
shown in Fig. 2. The system and its general performance charac-
teristics were identical to that normally used for Tunnel H operation
except that the arc-chamber was replaced by a special fuse and the
AMICOM load. In contrast with the arc-chamber fuse which initiates
and transfers an arc to the electrodes in the arc-chamber, this
special fuse was required to extinguish the arc generated by fusing in
order to transfer the current into the relatively high impedance
AMICOM load. This special fuse must carry the current long enough
(2 10 msec) for the main breaker S1 to open and de-ionize, during
which time the maximum i R drop across the fuse could not exceed
150 v to prevent the restriking of an arc across the terminals of S1.
After this initial hold time, the special fuse was required to blow, the
resistance of the fusing arc must increase to develop sufficient voltage
(= 3000 v} to transfer current into the AMICOM load, and then the
fusing arc must be extinguished. As mentioned before, Walker and
Smithson (Ref. 1) describe the development of a "copper tube' fuse to
meet these basic requirements. A typical set of volitage and current
traces obtained with the copper tube fuse and the AMICOM laser is
shown in Fig. 3. Although nearly 5C, 000 amp at 3000 v were delivered
to the AMICOM load in this case, a comparable amount of energy was
consumed in the fuse device.

A schematic of the Tunnel H circuit as used for the present re-
search is shown in Fig. 4. Some tests were made with an open circuit
{Case I) to simply examine the fuse voltage-current characteristics.
Later tests were made with dummy loads {(Cases II and III} in place of
the actual AMICOM load. Typically, measurements of fuse (or switch)
voltage and load voltage (vs or VL), fuse current (ig), load current (iL),
and total current (i) were made as functions of time. Voltage measure-
ments were obtained with voltage dividers, and current measurements
were obtained from inductive loops placed around the appropriate
buswork.

SECTION 1l
GENERAL SWITCHING CONSIDERATIONS

The existing AEDC-VKF inductive power supplies impose some
rather stringent requirements for the final process of transferring
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the current to the desired load. The final transfer switch must

(1) carry full current at a low voltage level (< 150 v) for a relatively
long time period (> 10 msec) to permit the cpening and de-ionization
of the main breaker S1 and (2) develop the voltage required to transfer
into the desired load. In the case of the AMICOM load a master arc-
gap was used; thus no current transfer was started until the voltage
reached a preset value. It will be show that the second step voltage
rise (item 2 above) must occur very rapidly to minimize the energy
expended in the transfer process.

Any actual load will, of course, have finite inductance and resist-
ance; thus it is of some interest to examine the minimum energy re-
quired to transfer into a purely inductive load, Consider the following
circuit

where att = 0, ig=1=1i,, i = 0andRg =0, andatt ==, ig =0,
ij, =i and Rg = ». The voltage equations are

. dy, d1
VAB = \'s = ISRS = I_.L T = _Lo—dl (1)

The switch energy dissipation equation is
Eg = vgig dt (2)

The current equation is

or

di di, dip 3
dt dt + dv (3)

Substituting Eqs. (1) and (3) into Eq. (2) and integrating yields

_ ]-'o LL i02
2{(L,+ L)
therefore,
E L.

E_: = Lo + LL (5)
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Note that this result is independent of the transfer time, absolute energy
level, or voltage level. Although physical reasoning indicates that this
is the minimum energy required to transfer, it can be shown that all
additional terms attributable toc load resistance are positive; thus this
result represents a true minimum. Consider the following circuit with
both inductance and resistance in the load

A
_‘b
i i*L
L i‘R L L
o s s R
L
B

The voltage equations become

di, - il
Tl LRy = - L, i (6)

vg = iglg = L,

The energy and current equations (Eqs. (2) and (3), respectively)
remain unchanged, thus

F 1 d .
E“ =-x f <L1J dltL + i R} dt {7)

<

or substituting Eqs. (3) and (6) and integrating the first term yields

o o0
B, . Lo + 2R SRS f iLigdt
Eo Lo+ Ly L, 1,° Lo+ L/ %
Less l.oss Attributable to Resistive lLoad
Attributable Component

to Inductive
Load Component

Unfortunately, a general solution to Eq. (8) is not available; however,
examination of the resistive term in Eq. {(8) reveals that it will always
be positive; thus for an arbitrary case

E L

s Q
B, T.+LL (9)

It is also of interest to consider the open-circuit case since the
AMICOM load {and possible other future loads) required a master
arc-gap preset at the required voltage. Clearly, the energy expended
prior to breakdown of the arc-gap must be kept to a minimum to achieve
efficient switching. It can be observed in the data of Walker and
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Smithson {Ref. 1) that the copper tube fuse produced a near linear
voltage rise with time (this will also be shown subsequently in the data
presented herein); thus we assume

vs = kt

where k is the average rate of voltage change with time. Let v, be
the preset voltage for breakdown of the arc-gap. The energy expended
up to this time is

Es’a-_-fa\,rid[a;fntidt (10)
but -
R R TS (1
therefore,
T ,2
- io - 05 £ (12)
thus 2 2
Baw _ %' [1 2t “a_:l (13)
E, Lok 4 L,isk
ES : }
Note that for —E'—<< 1
E!,ﬂ \.82 13 }
E, Lok e

Therefore, a given expenditure of energy from a given power supply
condition will require the voltage rise time (k) to increase as the

square of the required initial voltage to the load circuit. The energy
loss discussed previously (Egs. (9)) will be in addition to the above

loss since the above loss comes about in simply producing the conditions
required to start the actual transfer process.

Equation (13a) has been plotted in Fig. 5 to indicate the order of
required voltage rise times. The regime of the data from Walker and
Smithson (Ref. 1) is also noted. It is clear that at least an order in-
crease in the voltage rise times obtained by Walker and Smithson will
be required to produce an efficient transfer switch for use with a preset
arc-gap.

In summmary of the theoretical considerations, it has been shown
that an efficient transfer switch will require nearly a step voltage
rise, and even then, a minimum energy must be expended in the switch
itself, The voltage level must, of course, be equal to or greater than
the i R drop across the intended load.
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SECTION IY
SWITCH DEVELOPMENT

4,1 COPPER TUBE FUSE

The copper tube fuse used previously by Walker and Smithson
(Ref. 1) was re-examined to determine if (1) the operating voltage could
be increased, {2) the current level could be increased, and primarily
(3) the efficiency could be improved. The principles of the copper tube
fuse were discussed by Walker and Smithson. A sketch and photograph
of the copper tube fuse are shown in Fig. 6a. Tests at less than
100, 000 amp were conducted with a single tube, as shown in Fig. 6a.
Two identical tubes were clamped together for tests at 100, 000 amp or
greater.

Tests were made with the open-circuit arrangement shown in
Fig. 4 (Case I), and the test current was raised from 60, 000 to
108, 000 amp. The tests were conducted, for safety reasons, inside an
8-ft-diam steel blast tank. The voltage-current-time characteristics
from these tests are shown in Fig. 7. The zero reference time was
taken as the initiation of fuse break as estimated from the oscilloscope
traces. The peak voltage obtained was approximately 0. 08 i,, except
for the flat portions of the voltage traces which occurred during the
later part of the discharge process. This is believed to be caused by
interference between the magnetically blown arc and the blast tank
walls. This apparent interference with the blast tank walls also limited
the current range of the present tests since higher currents would have
produced earlier interference.

The relative energy losses of the copper tube fuse up to specific
voltage levels have been computed from the measured veoltage-current
characteristics and are shown in Fig. 8. It is interesting to note the
decreasing relative loss, at a given voltage level, with increasing initial
energy level. It should, however, be noted that a given load (i.e., fixed
resistance) will require an increasing voltage with increasing energy;
thus the relative energy loss may, in fact, increase, depending on the
specific load and energy levels.

Examination of the voltage-time curves of Fig. 7 shows that the
maximum obtained average rate of voltage rise (k) was approximately
1.5 x 108 v/sec. This is in close agreement with the lower voltage data
from Ref. 1, and referring to Fig. 5, it can be seen that this is far
short of the rate required for an efficient fuse.
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4.2 SAND FUSE

A "'sand" fuse was constructed by soldering 25 No. 16 bare copper
wires to copper end plates and imbedding the copper wires in dry
mortar sand. A sketch and photograph of the sand fuse are shown in
Fig. 9. The mortar sand was contained, as shown, by an insulating
material. The basic idea here was to quench the arc resulting from
vaporization of the copper wires with the dry mortar sand. The ex-
perimental voltage-time characteristics of the sand fuse are shown in
Fig. 10 for two lengths of wires, 24 and 12 in. The maximum average
rate of voltage rise was found to be nearly 4 x 106 v/sec. This value,
although over twice the copper tube face value, is still far short of the
increase desired.

4.3 GUN SWITCH

The concept of the so-called "gun'' switch evolved from considera-
tions of how to produce a very rapid, (- 108-v/sec) voltage rise.
The basic idea is to propel at high speed an insulator into a conducting
column and literally squeeze the column between two insulators. The
original design of the gun switch used a low voltage arc as the con-
ductor. A sketch of the initial gun switch is shown in Fig. 11. The
electrical end of the gun switch (Fig. 12) is, in effect, a coaxial arc-
chamber using a magnetic fuse as developed for the hotshot arc-
chambers (Ref. 4) to initiate the low voltage arc, After generation of
the low voltage arc, a polyethylene piston was driven into the arc.
Smokeless powder was used as the propellant, and typically, a piston
velocity of about 2000 ft/sec was used. Before firing, the gun tube was
evacuated to a pressure of about 0.5 torr. Exhaust ports, initially
sealed with blowout plugs, were located in the fuse base. These plugs
were designed to blow out at a pressure level just slightly above
atmospheric. The purpose of the blowout plugs was to prevent exces-
sive slowdown of the piston caused by high gas pressure before its
impact with the conducting gas column and the rear insulator. As noted
in Fig. 11, the positive bus from the power supply was connected to the
center electrode, and the gun tube itself was connected to the negative
bus.

The firing sequence was as follows: (1) switch S2 was closed to
divert current through the gun switch, (2) the magnetic fuse holds long
enough for the main breaker to open and de-ionize, (3) the magnetic
fuse breaks, creating a low voltage arc {< 300 v), (4) the arc voltage
rise is used as a signal to ignite the primer which, in turn, ignites the
smokeless powder, and (5) the piston impacts and produces a sharp
voltapge rise. A typical data trace showing the above sequence of
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events is shown in Fig. 13. This trace was obtained with the open-
circuit arrangement (Fig. 4, Case I} discussed previously.

Although the initial design of the gun switch produced very sharp
voltage rises, a number of problems was encountered. The low
voltage arc burned for approximately 7 msec before piston impact.
This generated gas pressure which, in turn, reduced the piston veloc-
ity. Although this velocity loss could, in principle, be compensated
for by the use of increased quantities of gunpowder, the stress level
on the gun was apparently quite high; thus only modest changes could
be made. The arc-heated hot gas exhausting through the rear blowout
ports was also quite troublesome. This hot gas frequently caused
external arcing in the buswork connections.

Several failures occurred because of mechanical rupture of the
insulation around the center electrode and resulting internal arcing.
Insulation materials such as nylon, fluorocarbon polymers, and
glass fiber epoxy were tested and would not stand the high impact
loads., High density polyethylene was the most satisfactory insulating
material tested, and even in this case it was found necessary to in-
crease the thickness of the insulation in critical areas to compensate
for the plastic flow of the polyethylene.

Experience gained from the initial design and a number of com-
ponent changes led to the evolution of the final gun switch design
shown in Fig. 14. In this case, the magnetic fuse was replaced with
a copper ribbon conductor which carried the current during the opera-
tion of switches S1 and S2 and remained in place until sheared by the
piston and folded into a recessed area. Single or double conductors,
Figs. 14a and b, respectively, could be used with this arrangement.
This scheme eliminated the objectionable low voltage arc of the initial
design. The exhaust ports were relocated on the sides of the gun tube
to eliminate the discharge of hot gases in the vicinity of the center
electrode and the connecting buswork. The firing sequence was re-
vised to initiate combustion of the gunpowder > 10 msec after the time
the current rise was detected in the gun switch ribbon conductors.

The open-circuit arrangement (Fig. 4, Case I) was used during
a few initial shots in an attempt to optimize the piston weight and
gunpowder loading and to study the open-circuit voltage rise times.
The polyethylene piston weight was varied from 229 to 513 gm, and
the propellant loading was varied from 100 to 150 gm of smokeless
powder. The 150 gm of powder produced failure of the polyethylene
insulation and the base of the center electrode; thus the powder charge
was limited to 125 gm. Direct measurements of piston velocity were

[de)
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not made; however, from the combustion chamber pressure traces, the
tube pressure traces and the voltage traces, an approximate estimate
of piston velocity can be made. The terminal velocity was estimated to
be about 2000 ft/sec for the case with 125 gm of powder and a 330-gm
piston. These tests were made at a current level of 25, 000 amp, and
typical results are shown in Fig. 15. Voltage rise rates of 4 x 108 v/
sec were obtained. Referring to Fig. 5, it is indicated that voltage rise
rates of this order offer the possibility of very efficient energy
transfers.

To study the transfer characteristics of the gun switch into an
actual load, a 0. 06-ohm, 6-uh load (Fig. 4, Case II) was paralleled
with the gun switch. The resistance of a single-ribbon conductor was
approximately 0. 0006 ohms; thus only a small fraction of the current
would be initially shunted through the actual load. This load was
paralleled directly across the gun switch without an arc-gap, as had
been previously used with the copper tube fuse and the AMICOM load.
The very high voltage rise rates available with the gun switch eliminate
the necessity for the arc-gap. A typical oscillograph data trace is
shown in Fig. 16. On this time scale the transfer appears to take place
as a step function; however, oscilloscope traces on a faster time scale
reveal that the transfer process typically took 100 to 150 usec with a
single-ribbon conductor at a current level of 25, 000 amp using a 330-gm
piston and from 100 to 125 gm of smokeless powder. Attempts to signif-
icantly increase the current level with the single-ribbon conductor were
unsuccessful. ¥ The double-ribbon conductor was tested with the same
load (Fig. 4, Case II), and it was found that currents up to 35, 000 amp
could be transferred with this arrangement. The double-ribbon con-
ductor was also tested with an increased impedance load {Fig. 4,
Case III), (R, = 0.12 ohms, Ly, = 10 uh), and a current of 25, 000 amp was
successfully transferred into this load. Typical oscilloscope current
and voltage traces for some of the successful runs are shown in Fig. 17a.
Data obtained during a couple of malfunctions are shown in Fig. 17b. In
the first case on Fig. 17b, a successful transfer was never obtained.
However, in the second case an initially successful transfer was obtained,
but after about 560 usec an insulation failure occurred, and the gun switch
again took over most of the current.

The various shot conditions made on the gun switch are listed in
Table I, and the successful transfers are also tabulated in Table II.

*Although one successful transfer was made at 31, 500 amp, con-
sistent transfers could not be made above 25, 300 amp.

10
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Approximate graphical integration of the voltage-current-time charac-
teristics of the gun switch was accomplished to determine the energy
consumption of the switch as tabulated in Table II. The gun switch
relative energy losses (Eg/E,) are summarized in Fig. 18 for all runs
for which valid data were obtained. It 1s interesting to note that the
gun switch is a go- or no-go-type switch, i.e., it is very efficient
whenever a proper transfer occurs, but guite poor performance is
exhibited for partial transfers. It is also interesting to note from
Fig. 18 that the successful transfers with the gun switch occur with
essentially the theoretical minimum expenditure of energy; thus no
further improvement in efficiency of this switch can be expected for
these conditions. In the same context, it is observed that all of the
successful transfers with the single-ribbon conductor occurred with
an electrical energy loss in the gun switch of between 1800 and

3000 joules. Successful transfers with the double-ribbon conductors
occurred with losses of about 3000 to 6000 joules or near twice the
single-conductor losses. The phenomenon which limits the present
energy level for successful application of the gun switch is not under-
stood; however, the above cited results indicate that a critical energy
loss density may exist. This was the hypothesis made before the
double-ribbon conductor was tested, and certainly a higher energy
level can be successfully transferred with this arrangement.

The question of scaling-up, i.e., 1ncreasing the energy transfer
ability, of the present gun switch is of considerable practical import-
ance since the existing AEDC-VKF inductive power supplies have energy
level capabilities from 50 to 500 times the capability of the present gun
switch. Unfortunately, the present experiments cover such a narrow
range of energy levels and physical parameters that a firm basis for
extrapolation of the present design does not exist. Based on the
previously discussed possibility of a limiting energy density for a given
gun, it is expected that the gun switch critical energy will increase at
least with the square of the gun tube diameter (i. e., a constant critical
energy per unit area). Since the voltage should increase as some ,
function of the effective arc length which will, in turn, be some function
of the tube diameter, an even greater power of the diameter may be in-
volved; however, further experiments will be necessary to determine
the scaling rules.

SECTION V
CONCLUDING REMARKS

The voltage rise rates for the copper tube fuses, sand fuses, and
the gun switch are summarized and compared to the previously dis-
cussed desired voltage rise rates from Fig. 5 in Fig. 12. The gun

11
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switch offers voltage rise times two orders of magnitude greater than
the other types of fuses; however, the allowable current level is far
below the desired level. The electrical transfer efficiency of the gun
switch has been shown to be very high, in fact, essentially at the
theoretical maximum for the successful transfers. The gun switch
represents in reality a device permitting a trade-off between cheap
gunpowder energy and relatively expensive electrical energy. Since
the combustion of 100 gm of smokeless gunpowder releases approxi-
mately 42, 000 joules, the absolute overall efficiency of the gun switch
is only 70 to 80 percent, as compared to an electrical efficiency from
97 to 98 percent. The gunpowder cost is, however, negligible as
compared to cost of the electrical energy from an inductive storage
system.

It is clear that the present gun switch was operated near its
structural 1limits, and several of the unsuccessful transfers were
caused by the structural failure of critical components. The design
of an operational gun switch should include adequate design margins
to allow for the difficulty of estimating impact loads. Generalized
optimum values of piston mass, piston velocity, gun tube length,
initial charge gas composition, and density were not determined dur-
ing the present research; rather, a specific piston material, piston
mass, gunpowder charge was determined empirically for the present
gun switch. Further experiments will be required to optimize the
many parameters involved and to determine the basic scaling rules
for building higher energy versions of the gun switch,
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TABLE |

SHOT CONDITIONS FOR GUN SWITCH

AEDC-TR-66-152

Piston Parallel
Current, Gunpowder,
. Conductor Load, Transfer
amp Length, | Weight, gm
. ohms
in, gm

24, 500 4 330 125 Single g. 086 Yes

24, 000 Yes*

23, 000 Yes

24, 500 Yes*

23, 600 100 ! Yes

25, 000 ‘ Yes

25, 000 No

26, 600 Yes

23, 500 105 No

25, 900 No
25,800 ! Yes
25,200 | | Yes

36, 500 : No

36, 000 i No

35, 000 125 No :
33, 000 105 No

31, 500 6 513 Yes

35, 000 } No

29, 000 4 330 Dual No

36, 000 No

34, 500 125 . Yes
37,000 Double No

36, 000 Yes ]
37,500 | 135 No '
40, 000 125 No

38, 000 130 No

ag, 000 5 415 130 No

28, 500 4 330 105 0.12 No

25, 500 Yes

24, 000 No

27, 000 No

| | |

*Insulation failed after transfer had occurred.
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TABLE Il
TRANSFER EFFICIENCY OF SUCCESSFUL RUNS

Enerey Experimental
Initial Stored nergy Relative Electrical
. Consumed by
Current, i,, Energy, E,, . Energy Consumed Transfer
a . Switch, Eg, ; .
amp joules ) by Switch, Eg/E, Efficiency,
joules
n, percent
0. 06-ohm, 6-uh Load, Single Fuse
25, 500 102, 000 1900 0.0185 =08
25, 000 107, 000 1800 0. 0169 =938
23, 600 94, 500 1650 0.0175 =098
25, 000 107, 000 2000 0.0187 =98
26, 600 120, 000 2130 0.0177 =98
25, 800 113, 000 2160 0.0191 = 48
25, 200 108, 000 1875 0.0173 =98
31, 500 170, 000 2940 0.0173 ~ 98

0. 06-ohm, 6-u¢h Load, Dual Fuse

34, 500 202, 000 5600 0.0278 = 97
36, 000 220, 000 6300 0. 0285 ~ 97

0. 12-ohm, 10-ph Load, Dual Fuse

25,500 111, 000 3050 0.0275 = §7
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